Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex.
نویسندگان
چکیده
Biochemical and pharmacological experiments support glutamate (Glu) as a thalamocortical transmitter, but do not distinguish direct from indirect effects (via excitation of glutamergic corticocortical fibers); anatomical studies to date have yielded variable results. We identified thalamocortical terminals in layer IV of primary somatic sensory, auditory, and visual cortex by injecting WGA-HRP in the corresponding thalamic sensory relay nuclei of rats. Terminals from each thalamic nucleus were similar, containing abundant mitochondria and loosely packed clear vesicles; they made asymmetric synaptic contacts mainly with dendritic spines. After tracer injections into nearby regions of cortex, most terminals also made asymmetric contacts mainly onto spines, but these corticocortical terminals were smaller, containing sparse mitochondria and densely packed clear vesicles. GABAergic terminals (identified by postembedding immunogold staining) made symmetric synapses mainly onto dendritic shafts; those terminating near thalamocortical terminals were also large and contained abundant mitochondria. To determine whether Glu is enriched in thalamocortical terminals, we performed postembedding double-labeling immunocytochemistry for Glu and GABA, using different gold particle sizes. The density of particles coding for Glu was significantly enriched over identified thalamocortical terminals, in comparison to nearby dendrites, astrocytes, and GABAergic terminals, and this enrichment was similar for all three sensory areas. The degree of enrichment in thalamocortical terminals, but not in GABAergic terminals, was linearly related to vesicle density. We conclude that Glu is likely to be a neurotransmitter for thalamocortical relay neurons.
منابع مشابه
Studies of Thalamocortical and Commissural the Rat Somatic Sensory Cortex
Studies of Thalamocortical and Commissural the Rat Somatic Sensory Cortex S. P. WISE AND E. G. JONES Department ofAnatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 631 I0 Autoradiographic, axonal degeneration, and horseradish peroxidase fiber tracing methods were employed to investigate the organization, development and potential plasticity of the thalamoco...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملVPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback.
Sensory information originating in individual whisker follicles ascends through focused projections to the brainstem, then to the ventral posteromedial nucleus (VPM) of the thalamus, and finally into barrels of the primary somatosensory cortex (S1). By contrast, the posteromedial complex (PoM) of the thalamus receives more diffuse sensory projections from the brainstem and projects to the inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 10 شماره
صفحات -
تاریخ انتشار 1994